skip to main content


Search for: All records

Creators/Authors contains: "Möller, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Hydrogen-rich Type II supernovae (SNe II) are the most frequently observed class of core-collapse SNe (CCSNe). However, most studies that analyse large samples of SNe II lack events with absolute peak magnitudes brighter than −18.5 mag at rest-frame optical wavelengths. Thanks to modern surveys, the detected number of such luminous SNe II (LSNe II) is growing. There exist several mechanisms that could produce luminous SNe II. The most popular propose either the presence of a central engine (a magnetar gradually spinning down or a black hole accreting fallback material) or the interaction of supernova ejecta with circumstellar material (CSM) that turns kinetic energy into radiation energy. In this work, we study the light curves and spectral series of a small sample of six LSNe II that show peculiarities in their H α profile, to attempt to understand the underlying powering mechanism. We favour an interaction scenario with CSM that is not dense enough to be optically thick to electron scattering on large scales – thus, no narrow emission lines are observed. This conclusion is based on the observed light curve (higher luminosity, fast decline, blue colours) and spectral features (lack of persistent narrow lines, broad H α emission, lack of H α absorption, weak, or non-existent metal lines) together with comparison to other luminous events available in the literature. We add to the growing evidence that transients powered by ejecta–CSM interaction do not necessarily display persistent narrow emission lines.

     
    more » « less
  2. Abstract

    The number of subduction zones that facilitated the northward translation of the Anatolide‐Tauride continental terrane derived from Gondwana to the southern margin of Eurasia at the longitude of western Turkey is debated. We hypothesized that if two north dipping subduction zones facilitated incipient collision in western Turkey, a late Cretaceous arc would have formed within the Neotethys and along the southern margin of Eurasia. To determine if an island arc formed within the Neotethys we investigated the sedimentary record of the Central Sakarya basin, which was deposited along the southern margin of Eurasia from 85 to 45 million years ago. Detrital zircon deposited within the lower levels of the Central Sakarya basin (the Değirmenözü Formation) are associated with south to north‐directed paleocurrents and exhibit a unimodal late Cretaceous age peak sourced from isotopically juvenile mantle melts. Zircon maximum depositional ages from the Değirmenözü Formation cluster between 95 and 90 Ma and are 5–10 Myr older than biostratigraphic depositional ages. Between 95 and 80 Ma, a 12‐unit shift from mantle to crustal derived εHf values occurs in the overlying Yenipazar Formation. We explain the absence of Paleozoic, Eurasian‐sourced detrital zircon, the rapid shift from mantle to crustal derived εHf values, and lag time in terms of passive margin subduction within an isolated intra‐oceanic subduction zone, whose island arc was reworked from south to north into the Central Sakarya basin during incipient collision. Thus, widely outcropping late Cretaceous plutonic rocks within Eurasia must have belonged to an additional convergent margin.

     
    more » « less
  3. ABSTRACT

    Recent analyses have found intriguing correlations between the colour (c) of type Ia supernovae (SNe Ia) and the size of their ‘mass-step’, the relationship between SN Ia host galaxy stellar mass (Mstellar) and SN Ia Hubble residual, and suggest that the cause of this relationship is dust. Using 675 photometrically classified SNe Ia from the Dark Energy Survey 5-yr sample, we study the differences in Hubble residual for a variety of global host galaxy and local environmental properties for SN Ia subsamples split by their colour. We find a 3σ difference in the mass-step when comparing blue (c < 0) and red (c > 0) SNe. We observe the lowest r.m.s. scatter (∼0.14 mag) in the Hubble residual for blue SNe in low mass/blue environments, suggesting that this is the most homogeneous sample for cosmological analyses. By fitting for c-dependent relationships between Hubble residuals and Mstellar, approximating existing dust models, we remove the mass-step from the data and find tentative ∼2σ residual steps in rest-frame galaxy U − R colour. This indicates that dust modelling based on Mstellar may not fully explain the remaining dispersion in SN Ia luminosity. Instead, accounting for a c-dependent relationship between Hubble residuals and global U − R, results in ≤1σ residual steps in Mstellar and local U − R, suggesting that U − R provides different information about the environment of SNe Ia compared to Mstellar, and motivating the inclusion of galaxy U − R colour in SN Ia distance bias correction.

     
    more » « less
  4. ABSTRACT

    We present the luminosity functions and host galaxy properties of the Dark Energy Survey (DES) core-collapse supernova (CCSN) sample, consisting of 69 Type II and 50 Type Ibc spectroscopically and photometrically confirmed supernovae over a redshift range 0.045 < z < 0.25. We fit the observed DES griz CCSN light curves and K-correct to produce rest-frame R-band light curves. We compare the sample with lower redshift CCSN samples from Zwicky Transient Facility (ZTF) and Lick Observatory Supernova Search (LOSS). Comparing luminosity functions, the DES and ZTF samples of SNe II are brighter than that of LOSS with significances of 3.0σ and 2.5σ, respectively. While this difference could be caused by redshift evolution in the luminosity function, simpler explanations such as differing levels of host extinction remain a possibility. We find that the host galaxies of SNe II in DES are on average bluer than in ZTF, despite having consistent stellar mass distributions. We consider a number of possibilities to explain this – including galaxy evolution with redshift, selection biases in either the DES or ZTF samples, and systematic differences due to the different photometric bands available – but find that none can easily reconcile the differences in host colour between the two samples and thus its cause remains uncertain.

     
    more » « less
  5. ABSTRACT

    Cosmological analyses with type Ia supernovae (SNe Ia) often assume a single empirical relation between colour and luminosity (β) and do not account for varying host-galaxy dust properties. However, from studies of dust in large samples of galaxies, it is known that dust attenuation can vary significantly. Here, we take advantage of state-of-the-art modelling of galaxy properties to characterize dust parameters (dust attenuation AV, and a parameter describing the dust law slope RV) for 1100 Dark Energy Survey (DES) SN host galaxies. Utilizing optical and infrared data of the hosts alone, we find three key aspects of host dust that impact SN cosmology: (1) there exists a large range (∼1–6) of host RV; (2) high-stellar mass hosts have RV on average ∼0.7 lower than that of low-mass hosts; (3) for a subsample of 81 spectroscopically classified SNe there is a significant (>3σ) correlation between the Hubble diagram residuals of red SNe Ia and the host RV that when corrected for reduces scatter by $\sim 13{{\ \rm per\ cent}}$ and the significance of the ‘mass step’ to ∼1σ. These represent independent confirmations of recent predictions based on dust that attempted to explain the puzzling ‘mass step’ and intrinsic scatter (σint) in SN Ia analyses.

     
    more » « less
  6. ABSTRACT

    We present our follow-up observations with GRANDMA of transient sources revealed by the Zwicky Transient Facility (ZTF). Over a period of six months, all ZTF alerts were examined in real time by a dedicated science module implemented in the Fink broker, which will be used in filtering of transients discovered by the Vera C. Rubin Observatory. In this article, we present three selection methods to identify kilonova candidates. Out of more than 35 million alerts, a hundred sources have passed our selection criteria. Six were then followed-up by GRANDMA (by both professional and amateur astronomers). The majority were finally classified either as asteroids or as supernovae events. We mobilized 37 telescopes, bringing together a large sample of images, taken under various conditions and quality. To complement the orphan kilonova candidates, we included three additional supernovae alerts to conduct further observations during summer 2021. We demonstrate the importance of the amateur astronomer community that contributed images for scientific analyses of new sources discovered in a magnitude range r′ = 17 − 19 mag. We based our rapid kilonova classification on the decay rate of the optical source that should exceed 0.3 mag d−1. GRANDMA’s follow-up determined the fading rate within 1.5 ± 1.2 d post-discovery, without waiting for further observations from ZTF. No confirmed kilonovae were discovered during our observing campaign. This work will be continued in the coming months in the view of preparing for kilonova searches in the next gravitational-wave observing run O4.

     
    more » « less
  7. Abstract

    Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain 5–10 LSNe in total while next-generation experiments are expected to contain several hundred to a few thousand of these systems. We search for these systems in observed Dark Energy Survey (DES) five year SN fields—10 3 sq. deg. regions of sky imaged in thegrizbands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains an LSN recall of 61.13% and a false-positive rate of 0.02% on the DES SN field data. DeepZipper selected 2245 candidates from a magnitude-limited (mi< 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields.

     
    more » « less
  8. ABSTRACT As part of the cosmology analysis using Type Ia Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically identified SN Ia samples using multiband light curves and host galaxy redshifts. For this analysis, we use the photometric classification framework SuperNNovatrained on realistic DES-like simulations. For reliable classification, we process the DES SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1863 SNe Ia from which we select 1484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement between the light-curve properties of the photometrically selected sample and simulations. Additionally, we create similar SN Ia samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory Legacy Survey of Space and Time. 
    more » « less
  9. Abstract

    Current and future cosmological analyses with Type Ia supernovae (SNe Ia) face three critical challenges: (i) measuring the redshifts from the SNe or their host galaxies; (ii) classifying the SNe without spectra; and (iii) accounting for correlations between the properties of SNe Ia and their host galaxies. We present here a novel approach that addresses each of these challenges. In the context of the Dark Energy Survey (DES), we analyze an SN Ia sample with host galaxies in the redMaGiC galaxy catalog, a selection of luminous red galaxies. redMaGiC photo-zestimates are expected to be accurate toσΔz/(1+z)∼ 0.02. The DES-5YR photometrically classified SN Ia sample contains approximately 1600 SNe, and 125 of these SNe are in redMaGiC galaxies. We demonstrate that redMaGiC galaxies almost exclusively host SNe Ia, reducing concerns relating to classification uncertainties. With this subsample, we find similar Hubble scatter (to within ∼0.01 mag) using photometric redshifts in place of spectroscopic redshifts. With detailed simulations, we show that the bias due to using redMaGiC photo-zs on the measurement of the dark energy equation of statewis up to Δw∼ 0.01–0.02. With real data, we measure a difference inwwhen using the redMaGiC photo-zs versus the spec-zs of Δw= 0.005. Finally, we discuss how SNe in redMaGiC galaxies appear to comprise a more standardizable population, due to a weaker relation between color and luminosity (β) compared to the DES-3YR population by ∼5σ. These results establish the feasibility of performing redMaGiC SN cosmology with photometric survey data in the absence of spectroscopic data.

     
    more » « less
  10. ABSTRACT Reverberation mapping is a robust method to measure the masses of supermassive black holes outside of the local Universe. Measurements of the radius–luminosity (R−L) relation using the Mg ii emission line are critical for determining these masses near the peak of quasar activity at z ≈ 1−2, and for calibrating secondary mass estimators based on Mg ii that can be applied to large samples with only single-epoch spectroscopy. We present the first nine Mg ii lags from our 5-yr Australian Dark Energy Survey reverberation mapping programme, which substantially improves the number and quality of Mg ii lag measurements. As the Mg ii feature is somewhat blended with iron emission, we model and subtract both the continuum and iron contamination from the multiepoch spectra before analysing the Mg ii line. We also develop a new method of quantifying correlated spectroscopic calibration errors based on our numerous, contemporaneous observations of F-stars. The lag measurements for seven of our nine sources are consistent with both the H β and Mg ii R−L relations reported by previous studies. Our simulations verify the lag reliability of our nine measurements, and we estimate that the median false positive rate of the lag measurements is $4{{\ \rm per\ cent}}$. 
    more » « less